Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner

Yibo You, Ting Xue, Linyan Cao, Liping Zhao, Haipeng Sun, Baolin Sun*

Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China

ARTICLE INFO

Article history:
Received 22 December 2013
Received in revised form 28 March 2014
Accepted 19 April 2014

Keywords:
S. aureus
gbaAB
ica
Biofilm
Glucose

ABSTRACT

The Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis are capable of attaching to a biomaterial surface and forming resistant biofilms. The identification of biomolecular and regulatory factors involved in staphyloccocal adhesion and biofilm formation is needed to understand biofilm-associated infection in humans. Here, we have identified a new operon, gbaAB (glucose induced biofilm accessory gene), that affects biofilm formation in S. aureus NCTC8325. Real-time reverse transcription PCR (RT-PCR) and electrophoretic mobility shift assay showed that GbaA and GbaB are transcribed from the same transcript, and GbaA directly inhibits the transcription of the gbaAB operon through self-repression. Our results indicated that the gbaA mutant displayed enhanced biofilm formation compared with the wild type. However, the gbaB and the gbaAB double mutant displayed reduced biofilm formation, suggesting that the gbaAB operon is involved in biofilm formation and that gbaB might be the key gene in biofilm regulation. Phenotypic analysis suggested that the gbaAB operon mediated biofilm formation of S. aureus at the multicellular aggregation stage rather than during initial attachment. In addition, real-time RT-PCR analysis showed that icaA was upregulated in the gbaA mutant and downregulated in the gbaB and gbaAB mutants compared with the wild type. In addition, the gbaA and the gbaB mutants affected the induction of biofilm formation by glucose. Our results suggest that the gbaAB operon is involved in the regulation of the multicellular aggregation step of S. aureus biofilm formation in response to glucose and that this regulation may be mediated through the ica operon.

2014 Elsevier GmbH. All rights reserved.

Introduction

Staphylococcus aureus is a versatile human pathogen that causes a wide range of infections. Many S. aureus infections, such as endocarditis and osteomyelitis, are thought to be associated with the formation of biofilms (George and Muir, 2007). A biofilm is an adherent community of bacteria with an organized structure and chemistry, surrounded by an extracellular biochemical polymer. In addition to aiding the bacterial colonization of surfaces, biofilms are believed to increase the tolerance to antibiotics and host immune defences (Fux et al., 2005; Leid et al., 2002; Otto, 2008).

Biofilms are composed of layers of bacteria within a glyocalyx composed of polysaccharides, DNA, and proteins (Costerton et al., 1987; Laverty et al., 2013; O’Neill et al., 2008; Otto, 2008; Rice et al., 2007). Polysaccharides, predominantly polysaccharide intercellular adhesin (PIA/PNAG), are the most common components of S. epidermidis and S. aureus biofilms. PIA/PNAG synthesis is mediated by the intercellular adhesion (ica) operon, which encodes three membrane proteins with enzymatic activity (IcaA, IcaD, and IcaC) and one extracellular protein (IcaB) (Cramton et al., 1999; Heilmann et al., 1996; Vuong et al., 2004). Moreover, a decreased PIA level is considered to be the main factor leading to the destructive ability of biofilm formation in S. aureus NCTC8325. In addition to the ica locus and PIA/PNAG, proteinaceous intercellular adhesins including Bap, SasG, Aap, AtlE, and MSCRAMMs play a role in staphyloccocal biofilm formation (Cucarella et al., 2001; Fey, 2010; O’Gara, 2007; O’Neill et al., 2008). However, the regulation of these factors is complex and variable in different stains.

Several proteins have been reported to contribute to the regulation of expression of the staphyloccocal ica locus, including IcaR, SigB, TcaR, SarA, SrrAB, CcpA, PurR, SarX, and Rbf (Cue et al., 2013; Fujimoto et al., 2009; Jefferson et al., 2004; Knobloch et al., 2001; O’Gara, 2007; Seidl et al., 2008; Ulrich et al., 2007). The most important factor involved in icaADBC regulation is IcaR, a member of the TetR family of regulatory proteins, which represses ica operon expression by binding to the icaA promoter region (Ramos et al., 2005). The inactivation of IcaR has been shown to significantly increase icaADBC expression and PIA/PNAG production.
and demonstrated that the gbaAB operon is involved in the biofilm formation of this bacterium on both polystyrene and glass. gbaA and gbaB are corresponding to open reading frame (ORF) SAOUHSC_02897 (GenDel: 3921349) and ORF SAOUHSC_02898 (GenDel: 3921350) of strain NCTC8325 at the National Center for Biotechnology Information (NCBI), respectively. Our data suggest that gbaA and gbaB are located in the same operon, and GbaA represses the transcript level of gbaB through direct self-repression of the gbaAB operon. Additionally, we found that GbaAB can modulate biofilm formation in response to glucose and that this regulation may be mediated by the ica operon in S. aureus NCTC8325.

Materials and methods

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this study are described in Table 1. Staphylococcus aureus and Escherichia coli were grown in Luria–Bertani (LB; BD, Franklin Lakes, NJ, USA) medium, tryptic soy broth (TSB; BD) medium, tryptic soy broth without glucose (TSBg−; BD) or tryptic soy agar (TSA; BD) medium with the appropriate antibiotics for plasmid selection and maintenance. The

<table>
<thead>
<tr>
<th>Strains or plasmid</th>
<th>Relevant genotype</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCTC8325</td>
<td>Wild-type</td>
<td>NARS A*</td>
</tr>
<tr>
<td>RN2220</td>
<td>8325-4- initial recipient for modification of plasmids which are introduced into S. aureus from E. coli</td>
<td>NARS A*</td>
</tr>
<tr>
<td>SH1000</td>
<td>8325-4 ΔnblU repaired</td>
<td>Horsburgh et al. (2008)</td>
</tr>
<tr>
<td>SY1</td>
<td>8325 gbaA::ermB</td>
<td>This study</td>
</tr>
<tr>
<td>SY2</td>
<td>8325 gbaA::ermB pJ50</td>
<td>This study</td>
</tr>
<tr>
<td>SY3</td>
<td>8325 gbaA::ermB pLIgbaA</td>
<td>This study</td>
</tr>
<tr>
<td>SY4</td>
<td>8325 gbaA::ermB</td>
<td>This study</td>
</tr>
<tr>
<td>SY5</td>
<td>8325 gbaB::ermB pLI50</td>
<td>This study</td>
</tr>
<tr>
<td>SY6</td>
<td>8325 gbaB::ermB pLIgbaAB</td>
<td>This study</td>
</tr>
<tr>
<td>SY7</td>
<td>8325 gbaB::ermB</td>
<td>This study</td>
</tr>
<tr>
<td>SY8</td>
<td>8325 gbaB::ermB pJ50</td>
<td>This study</td>
</tr>
<tr>
<td>SY9</td>
<td>8325 gbaB::ermB pLIgbaAB</td>
<td>This study</td>
</tr>
<tr>
<td>SY10</td>
<td>8325 pLI50</td>
<td>This study</td>
</tr>
<tr>
<td>SY11</td>
<td>8325 pLIgbaA</td>
<td>This study</td>
</tr>
<tr>
<td>SY12</td>
<td>8325 pLIgbaB</td>
<td>This study</td>
</tr>
<tr>
<td>SY13</td>
<td>8325 pLIgbaB</td>
<td>This study</td>
</tr>
<tr>
<td>SY14</td>
<td>8325 pRMC2</td>
<td>This study</td>
</tr>
<tr>
<td>SY15</td>
<td>8325 pRMCgbaA</td>
<td>This study</td>
</tr>
<tr>
<td>SY16</td>
<td>8325 pRMCgbaB</td>
<td>This study</td>
</tr>
<tr>
<td>SY17</td>
<td>SH1000 pRMC2</td>
<td>This study</td>
</tr>
<tr>
<td>SY18</td>
<td>SH1000 pRMCgbaA</td>
<td>This study</td>
</tr>
<tr>
<td>SY19</td>
<td>SH1000 pRMCgbaB</td>
<td>This study</td>
</tr>
<tr>
<td>SY20</td>
<td>8325 pGFp</td>
<td>This study</td>
</tr>
<tr>
<td>SY21</td>
<td>8325 gbaA::ermB pGFp</td>
<td>This study</td>
</tr>
<tr>
<td>SY22</td>
<td>8325 gbaA::ermB pGFp</td>
<td>This study</td>
</tr>
<tr>
<td>DH15a</td>
<td>Clone host strain, supD4 ΔlacU169 (y80lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1</td>
<td>TransGen</td>
</tr>
<tr>
<td>BL21 (DE3)</td>
<td>Express strain, F' ompT hsdS (r - m -) gal dcm (DE3)</td>
<td>TransGen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasmids</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pEasy-blunt simple</td>
<td>Clone vector, KanR ApR</td>
<td>TransGen</td>
</tr>
<tr>
<td>pET28a (+)</td>
<td>Expression vector with a hexahistidine tag, KanR</td>
<td>Novagen</td>
</tr>
<tr>
<td>pG6A</td>
<td>pET28a (+) with the gbaA coding sequence, KanR</td>
<td>This study</td>
</tr>
<tr>
<td>pEC1</td>
<td>pUC18 derivative, source of the ermB gene; ApR</td>
<td>This study</td>
</tr>
<tr>
<td>pBT2</td>
<td>Shuttle vector, temperature sensitive, ApR Cmr</td>
<td>Brukner</td>
</tr>
<tr>
<td>pBTgbaA</td>
<td>pBT2 containing upstream and downstream fragments of gbaA and ermB gene, for gbaA mutagenesis, ApR Cmr Emr</td>
<td>This study</td>
</tr>
<tr>
<td>pBTgbaB</td>
<td>pBT2 containing upstream and downstream fragments of gbaB and ermB gene, for gbaB mutagenesis, ApR Cmr Emr</td>
<td>This study</td>
</tr>
<tr>
<td>pRMCgbaA</td>
<td>pRMC2 with gbaA ORF, ApR Cmr</td>
<td>This study</td>
</tr>
<tr>
<td>pRMCgbaB</td>
<td>pRMC2 with gbaB ORF, ApR Cmr</td>
<td>This study</td>
</tr>
<tr>
<td>pLJ50</td>
<td>Shuttle cloning vector, ApR Cmr</td>
<td>Addgene</td>
</tr>
<tr>
<td>pLJgbaA</td>
<td>pLJ50 with gbaA ORF and its promoter, ApR Cmr</td>
<td>This study</td>
</tr>
<tr>
<td>pLJgbaB</td>
<td>pLJ50 with gbaB ORF and the promoter of gbaA, ApR Cmr</td>
<td>This study</td>
</tr>
<tr>
<td>pgfp</td>
<td>gfp expression with the promoter of S10 ribosomal gene, ApR Cmr</td>
<td>This study</td>
</tr>
</tbody>
</table>

* NARS A, Network on Antimicrobial Resistance in Staphylococcus aureus.
* KanR, kanamycin-resistant; ApR, ampicillin-resistant; Cmr, chloramphenicol-resistant; Emr, erythromycin-resistant.
mutants were constructed using a method previously described (Bruckner, 1997). All primers used in this study are listed in Table 2.

Construction of complementation or over-expression strains

To create plasmids pLgbaA and pLgbaAB, the target genes and their promoters from S. aureus NCTC8325 were amplified by PCR with primers c-gbaA-f and c-gbaA-f for gbaA and primers c-gbaAB-f and c-gbaAB-f for gbaAB. The PCR products were cloned into pLJSO (Addgene). For pLgbaB construction, before it was cloned into pLJSO, the gbaB gene fragment was amplified with primers c-gbaA-f and c-gbaA-f and ligated to the gbaAB promoter fragment (amplified with primers p-gbaAB-f and p-gbaAB-r). To create plasmids pRMCgabaA and pRMCgabaB, the target genes were amplified by PCR with primers i-gbaA-f and i-gbaB-f for gabaA and primers i-gabaA-f and i-gabaB-f for gabaAB and then cloned into pRMC2 (Corrigan and Foster, 2009). The plasmids were transformed into E. coli DH5α and transformed by electroporation into S. aureus RN4220 and subsequently transferred to their mutant or wild-type strains. All primers used in this study are listed in Table 2.

Total RNA isolation, cDNA generation, real-time RT-PCR, and microarray processing

For the total RNA isolation, the overnight cultures of S. aureus were diluted 1:100 in TSB and then grown at different growth phase until collected. The cells were processed with 1 ml of TRIzol (TaKaRa, Kyoto, Japan) in combination with 0.1-mm-diameter-silica beads in a FastPrep-24 Automated system (MP Biomedicals Solon, OH, USA), and residual DNA was removed with RNase free DNasel (TaKaRa, Kyoto, Japan). For the reverse-transcription, the cDNAs were synthesized using a PrimeScript 1st Strand cDNA Synthesis Kit (TaKaRa). The real-time PCR was performed with SYBR Premix Ex Taq (TaKaRa) using the StepOne Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA). The quantity of cDNA measured using real-time PCR was normalized to the abundance of hu cDNA (Valihrach and Demenerova, 2012). The real-time PCR assays were repeated a minimum of three times. To investigate the expression of genes that affect biofilm formation, bacterial cells were grown statically in the 24-well plate at different time courses (4 h, 8 h, 12 h) until collected. Bacteria in the wells of biofilm formation at 12 h were collected for microarray analysis. The microarray processing and data analysis were conducted by the Biochip Company of Shanghai, China. The microarray data was uploaded to Gene Expression Omnibus (GEO) with accession number: GSE53432.

Purification of GbaA

The 6-His-tagged GbaA protein was expressed and purified using standard procedures. The full-length gbaA ORF was amplified using PCR with the g-gbaA-f and g-gbaA-r primers from S. aureus NCTC8325 genomic DNA, cloned into the expression vector PET28a (+) (Novagen, Merck, Darmstadt, Germany), and transformed into E. coli BL21 (DE3). The transformant was grown in LB at 37 °C to an OD600 of 0.4 and induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 37 °C for additional three hours. The cells were harvested and lysed by sonication in a lysis buffer (20 mM Tris–HCl, pH 7.5, 200 mM NaCl). GbaA was purified with a nickel-nitrilotriacetic acid agarose solution (Qiagen, Valencia, CA, USA) following the manufacturer’s recommendation. The bound

Table 2

Primers used in this study.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Oligonucleotide (5′-3′)*</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>up-gbaA-f</td>
<td>GCGtgcgacTGATTAATGACACTTATA</td>
<td>gbaA deletion</td>
</tr>
<tr>
<td>up-gbaA-f</td>
<td>GCGgatacGTGCTGAGTGATTTCTGCAAT</td>
<td>gbaA deletion</td>
</tr>
<tr>
<td>down-gbaA-f</td>
<td>GCGgaattGGCTGAGTGATTCTTGAAT</td>
<td>gbaA deletion</td>
</tr>
<tr>
<td>down-gbaA-f</td>
<td>GCGaagcTTGACTGACCTTATGATAG</td>
<td>gbaA deletion</td>
</tr>
<tr>
<td>up-gbaB-f</td>
<td>GCGgattcATAAGCCTGACTGCAATGTA</td>
<td>gbaB deletion</td>
</tr>
<tr>
<td>up-gbaB-f</td>
<td>GCGgaattCTTCTCTCAAGCTGACAG</td>
<td>gbaB deletion</td>
</tr>
<tr>
<td>down-gbaB-f</td>
<td>GCGgattcTTAGAAATTCTGAACACAC</td>
<td>gbaB deletion</td>
</tr>
<tr>
<td>up-gbaAB-f</td>
<td>GCGgattcCTTCTCTCACTGACAT</td>
<td>gbaAB deletion</td>
</tr>
<tr>
<td>up-gbaAB-f</td>
<td>GCGgattcCTTCTCTCACTGACAT</td>
<td>gbaAB deletion</td>
</tr>
<tr>
<td>i-gbaA-f</td>
<td>GCGcatcAATTTTGAGTGAATTACTATCGG</td>
<td>gbaA induced expression</td>
</tr>
<tr>
<td>i-gbaA-r</td>
<td>GCGgattcTTAGATGATGAGGCCACTTAT</td>
<td>gbaA induced expression</td>
</tr>
<tr>
<td>i-gbaB-f</td>
<td>GCGgattcTTAGATGATGAGGCCACTTAT</td>
<td>gbaB induced expression</td>
</tr>
<tr>
<td>i-gbaB-r</td>
<td>GCGgattcTTAGATGATGAGGCCACTTAT</td>
<td>gbaB induced expression</td>
</tr>
<tr>
<td>rt-icaA-f</td>
<td>TTTCGGGTGTCTCCATCTTAT</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-icaA-r</td>
<td>CGTACTAATACCCCTGTCCC</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-gbaA-f</td>
<td>GCAAGTGCTTGAATTATC</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-gbaA-r</td>
<td>EGTGTAAGCTGCTCATC</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-gbaB-f</td>
<td>TTATCCAGGGCCATATA</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-gbaB-r</td>
<td>AGTACTGACTGTAACATCA</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-hu-f</td>
<td>AAAAAGGCCGTCGTCGACAGTAG</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>rt-hu-r</td>
<td>AAAACGGCCTGGCTGCCAGTAG</td>
<td>RT-real-time PCR</td>
</tr>
<tr>
<td>p-gbaA-f</td>
<td>AATTCGACTAAATGGCG</td>
<td>EMUSA</td>
</tr>
<tr>
<td>p-gbaA-r</td>
<td>GATTCACCTACTAATTAT</td>
<td>EMUSA</td>
</tr>
</tbody>
</table>

* The sequences in lowercase letters refer to the restriction endonuclease recognition sites.
protein was eluted with an elution buffer (200 mM imidazole, 20 mM Tris–HCl, pH 7.5, 200 mM NaCl). The imidazole in the eluent was removed using a Centrifuge Biomax-5 column (Millipore, Billerica, MA, USA), and the GbaA protein solution was supplemented with 30% glycerol and stored at −80 °C until use. The purity of the proteins was analyzed using SDS-PAGE, and the protein concentration was determined using the BCA assay with bovine serum albumin as the standard.

Electrophoretic mobility shift assay (EMSA)

The DNA fragments containing the promoter region were amplified from the S. aureus NCTC8325 genomic DNA. The PCR products were labeled using a digoxigenin (DIG) gel shift kit (Roche, Indianapolis, IN, USA) according to the manufacturer’s instructions. The labeled fragment was incubated at 25 °C for 15 min with various amounts of GbaA in 10 μl of incubation buffer (10 mM Tris–HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA). After incubation, the mixtures were electrophoresed in a 5% native polyacrylamide gel in 0.5× Tris–borate–EDTA (TBE) buffer. The band shifts were detected and analyzed according to the manufacturer’s instructions. The images were obtained using ImageQuant LAS 4000 mini (GE, Piscataway, NJ, USA). The unlabeled fragments of the pta ORF region were added as non-specific DNA.

Biofilm formation and analysis

Biofilm formation under static conditions was determined by the microtiter plate assay based on the method described previously (Beenken et al., 2003). Briefly, the overnight cultures were made at a 1:100 dilution using fresh TSB medium. The diluted cell suspension was inoculated into flat-bottom 96-well polystyrene plates (Costar 3599, Corning Inc., Corning, NY), 200 μl for each well. The plates were incubated at 37 °C for different time courses and the wells were rinsed gently with water five times to remove non-adherent cells. Subsequently, the plates were stained with 0.5% crystal violet for 15 min, and then rinsed again with water to remove unbound stain. After that, the plates were dried, and the optical density at 560 nm (OD$_{560}$) was determined with an enzyme-linked immunosorbent assay reader in a 3 × 3 scan model. For assay of the effect of glucose, TSB–g– medium was supplemented with glucose with a concentration range of 0–5.6%. To investigate the biofilm formation using prMC2 anhydrotetracycline-inducible expression plasmid, the TSB medium was supplemented with anhydrotetracycline with a concentration range of 0–400 ng/ml.

The biofilm assay on glass was carried out essentially as described (Lim et al., 2004). In brief, a 30 μl sample of the cell suspension diluted as described above for the polystyrene assay was placed on sterile glass slides and incubated in a petri dish on a wet paper towel at 37 °C overnight. The slides were rinsed gently with distilled water, air dried, and stained with 0.5% crystal violet for 15 min. Biofilm formation was also examined in a flow cell (Stovall, Greensboro, USA), which was assembled and prepared according to the manufacturer’s instructions. Flow cell experiments and laser scanning confocal microscope (CLSM) were performed as described previously (Yu et al., 2012). Overnight cultures of different strains were adjusted to OD$_{600}$ of 5.0 and made at a 1:100 dilution in fresh 0.5% TSB. Flow cells were inoculated with 4 ml of these culture dilutions and incubated at 37 °C for 1 h, and then laminar flow (250 μl/min) was initiated. Biofilms of different strains were cultivated at 37 °C in 0.5% TSB in three individual channels. The strains were transformed with the GFP plasmid for fluorescence detection, thus chloramphenicol was added to the flow cell medium to maintain plasmid selection. CLSM was performed on a Zeiss LSM710 system (Carl Zeiss, Jena, Germany) with a 20 × 0.8 n.a. apochromatic objective. Z-stacks were collected at 1 μm intervals. Confocal parameters set for wild type biofilm detection were taken as standard settings. Selected confocal images stood for similar areas of interest and each confocal experiment was repeated four times. The confocal images were acquired from Zeiss ZEN 2010 software package (Carl Zeiss, Jena, Germany) and the three-dimensional biofilm images were rendered with Imaris 7.0 (Bitplane, Zurich, Switzerland).

Primary attachment assay on polystyrene

Primary attachment assay on polystyrene was carried out essentially as described (Lim et al., 2004). In brief, overnight cultures were diluted in TSB, and about 300 CFU was added to polystyrene petri dishes. After incubation at 37 °C for 1 h, the petri dishes were rinsed gently with 5 ml of sterile PBS (pH 7.5) three times and covered with 15 ml of molten 0.8% TSA maintained at 48 °C. Primary attachment was expressed as a percentage of CFU remaining on the petri dishes after washing. Each experiment was repeated three times.

Detection of PIA

The PIA extracted from S. aureus was blotted onto PVDF membrane (GE Healthcare) using a 96-well dot-blot apparatus according to a method described elsewhere (Lin et al., 2012). After blotting, the membrane was dried and soaked in a solution containing 3% bovine serum albumin and 0.05% Tween-20 in phosphate-buffered saline (PBS). The membrane was then incubated at room temperature for 1 h in solution containing 0.8 mg/ml wheat germ agglutinin conjugated with biotin (WGA–biotin) (Sigma–Aldrich). After washing four times with PBS, PIA was detected using horseradish peroxidase-conjugated streptavidin followed by chemiluminescence detection (Thermo).

Results

GbaA represses the transcription of gbaAB through a self-repression manner

Bioinformatics analysis revealed that GbaA contained a consensus region signature of the TetR family of regulators (Fig. S1), suggesting that GbaA is perhaps a transcriptional regulator (Ramos et al., 2005). In addition, GbaB is described as a putative short chain oxidoreductase in GenBank, suggesting that GbaB may participate in metabolic pathways. The available genomic information shows the organization of the gbaAB operon. As shown in Fig. 1A, the gbaA gene is located upstream of gbaB. There are eight short common base pairs at the adjacent site, suggesting that GbaA and GbaB might be in the same operon. To determine whether gbaA and gbaB are co-transcribed in the WT, the gbaA cDNA and gbaB cDNA was amplified by reverse transcription PCR from the same mRNA of WT using rt-gbaA-r and rt-gbaB-r specific primers (Fig. S5), respectively, and then the relative gbaA-cDNA abundance between gbaA cDNA and gbaB cDNA was compared using real-time PCR assays (Fig. S2C). The results showed the same cDNA level and Tm (77.58 °C), indicating that gbaA and gbaB were transcribed at the same time. We also observed that the transcript levels of both gbaA and gbaB significantly decreased when the cells were grown to the early exponential phase (OD$_{600}$ = 1.0, as shown in Fig. S4) in TSB medium (Fig. S2B), suggesting that the transcription of gbaAB might be repressed by another regulator to maintain the low transcript level. Because GbaA is a TetR family regulator containing a helix-turn-helix DNA-binding domain, we proposed that GbaA might have a negative regulatory effect on the transcription of the gbaAB operon through direct binding to the gbaAB promoter region.
Analysis of microarray results revealed that approximately 172 up-regulated genes and 172 down-regulated gene had a fold change less than 2.0, and the expression levels of gbaB was significantly up-regulated more than 177-fold in gbaA mutant (Table S1). In addition, we confirmed that the transcript level of gbaB in the gbaA mutant was significantly higher than that in the wild type using real-time RT-PCR analysis (Fig. 1B), suggesting that GbaA represses the transcription of gbaAB throughout the growth phase in S. aureus. The same results were obtained in other growth phases (data not shown). Furthermore, as shown in Fig. 1C, GbaA appears to have a strong ability to bind to the promoter regions of the gbaAB operon (Fig. S3) in vitro, confirming that GbaA represses gbaAB expression by directly binding to its promoter region.

GbaA inhibits biofilm formation via gbaB, which is the biofilm-induced gene required for the multicellular aggregation of biofilm formation

QacR and IcaR are TetR family regulators and are known to be involved in multidrug resistance and biofilm formation in staphylococci. Therefore, it was reasonable to investigate whether S. aureus GbaA also has this common feature. We first compared the biofilm formation of the wild type, the gbaA mutant, and the gbaA-complemented strain on both polystyrene and glass. As shown in Fig. S6A and B, the gbaA mutation resulted in an increased biofilm formation ability on both polystyrene and glass, which could be complemented by pLI50 containing the wild type gbaA gene. These results indicated that GbaA is involved in biofilm formation. Because gbaA and gbaB are in the same operon, it is suggested that GbaB may also be involved in biofilm formation. We first tested the biofilm formation of the gbaA mutant, the gbaA-complemented strain, the gbaB mutant, the gbaB-complemented strain, the gbaAB mutant, the gbaAB-complemented strain, and the wild type using microtitre plate assays (Fig. 2A). The results showed that both the gbaB and gbaA mutants resulted in decreased biofilm formation abilities compared with that of the wild type. Additionally, as shown in Fig. 2A, the amounts of biofilm formed by the gbaA- and gbaA-complemented strains were more than that formed by the wild-type strain. This finding was most likely due to the overexpression of the target gene because complementation was performed with a multicopy plasmid vector. In addition, we compared the growth rates of the gbaA mutant, the gbaA-complemented strain, the gbaB mutant, the gbaB-complemented strain, the gbaA mutant, the gbaA-complemented strain, and the wild type. The results showed no remarkable difference between the seven strains (Fig. 2C).

To confirm the regulatory role of GbaA and GbaB in biofilm formation, we individually overexpressed gbaA and gbaB, respectively, in the wild type by using pLI50 and pRM2 plasmids. pLI50 is a stable expression plasmid that overexpresses the target gene by using its own promoter, and pRM2 is an anhydrotetracycline (aTet)-inducible expression plasmid that can express the target gene by using the ppxl/tetO promoter (Bateman et al., 2001; Corrigan and Foster, 2009). As shown in Fig. 2D, the NCTC8325 strain containing pLggbA showed significantly increased biofilm formation compared with the strain NCTC8325 containing pLI50 (vector). In contrast, the strain NCTC8325 containing pLggbA exhibited decreased biofilm formation. Also shown in Fig. 2E and F, the biofilm formation ability of the strain NCTC8325 containing pRM2 was stronger than that of the strain NCTC8325 with pRM2 (vector) induced by aTet ranging from 0 to 400 ng/ml. In contrast, the biofilm formation of the strain NCTC8325 containing pRM2 was weaker from 0 to 100 ng/ml aTet and inappreciably different from 100 to 400 ng/ml aTet compared with the NCTC8325 cells containing pRM2 (vector).

In addition, we checked the biofilm formation of the SH1000 strain, which contains the pRM2gbA, pRM2gbB, and pRM2 plasmid, and the results showed that there were no notable differences
Fig. 2. **gbaA** regulates biofilm formation through **gbaB** in *S. aureus* NCTC8325. (A) Comparison of biofilm formation of SY10 (wild type with a blank pLI50), SY2 (the **gbaA** mutant with a blank pLI50), SY3 (the **gbaA** mutant with a pLI50 encoding GbaA), SY5 (the **gbaB** mutant with a blank pLI50), SY6 (the **gbaB** mutant with a pLI50 encoding GbaB), SY8 (the **gbaA** mutant with a blank pLI50), and SY9 (the **gbaAB** mutant with a pLI50 encoding GbaA), SY5 (the **gbaB** mutant with a blank pLI50), SY6 (the **gbaB** mutant with a pLI50 encoding GbaB), SY8 (the **gbaAB** mutant with a blank pLI50), and SY9 (the **gbaAB** mutant with a pLI50 encoding GbaAB) on a polystyrene microtitre plate. *P* < 0.05, **P** < 0.01 vs SY10. (B) Quantification of PIA of SY10, SY2, SY3, SY5, SY6, SY8 and SY9. PIA was extracted from overnight cultures of each strain, serially diluted, and applied to a PVDF membrane. PIA was detected using WGA-biotin. After incubation with HRP–streptavidin, the spots were visualized by chemiluminescence detection. Numbers at the top of the figure indicate PIA dilutions. (C) Comparison of the growth rates of SY10, SY2, SY3, SY5, SY6, SY8 and SY9. (D) Comparison of the biofilm formation of SY10, SY11 (the wild type with a pLI50 encoding GbaA), SY12 (the wild type with a pLI50 encoding GbaB) and SY13 (the wild type with a pLI50 encoding GbaAB). *P* < 0.05, **P** < 0.01 vs SY10. (E) Comparison of the biofilm formation of SY17 (the wild type with a blank pRM2), SY18 (the wild type with a pRM2 encoding GbaA) and SY19 (the wild type with a pRM2 encoding GbaB). (F) Quantitation of biofilms. The cells that adhered to the plate after staining with crystal violet were measured by OD₆₀₀. All of the biofilm formation assays were repeated five times with similar results. Error bars indicate standard deviations. OD₆₀₀, optical density at 560 nm.
whether GbaAB regulates biofilm formation through activating the expression of the ica operon and subsequent PIA production, we measured the transcript level of icaA in the biofilm bacteria at different growth phases using real-time RT-PCR (Fig. 3) and PIA production (Fig. 2B). Interestingly, the transcript level of icaA was remarkably increased in the gbaA mutant compared to that in the wild type, whereas the transcript levels of icaA in the gbaB and gbaAB mutants were more decreased compared with the wild type (Fig. 3), suggesting that gbaB, which was repressed by GbaA, might indirectly induce the ica transcription. In addition, we found no remarkably different transcript levels of icaA between the gbaA mutant, the gbaB mutant, the gbaAB mutant, and wild type (data not shown). As shown in Fig. 2B, the PIA production was consistent with the biofilm formation ability (Fig. 2A), indicating that the effect of gbaAB on biofilm formation is due largely to PIA production. In conclusion, our results suggest that the gbaAB operon regulates biofilm formation via the ica operon and PIA in S. aureus NCTC8325.

Involvement of the gbaAB operon in biofilm induction by glucose

Glucose has been shown to induce the multicellular aggregation step of biofilm formation. To investigate whether biofilm induction by glucose is mediated through the gbaAB operon, biofilm assays were performed in the wild type, the isogenic gbaA and gbaB mutants, and the gbaA- and gbaB-complemented strains in the presence of various amounts of glucose. As shown in Fig. 4A, the mutation of gbaA resulted in increased glucose-induced biofilm formation at all glucose concentrations, and the gbaB mutant (Fig. 4B) showed a decrease of glucose-induced biofilm formation. The effect of the gbaA and gbaB mutants could be complemented by the pl150 plasmid containing the gbaA and gbaB genes, respectively. Additionally, the gbaA-complemented strain produced less biofilm than the wild-type strain, while the gbaB-complemented strain produced more biofilm. These results indicated that GbaA might modulate biofilm formation on polystyrene in response to glucose through GbaB. We also checked whether the gbaAB operon regulates biofilm induction by NaCl and ethanol; however, the results showed no significant differences between the wild type and the mutants, suggesting that the gbaAB operon does not affect biofilm in response to NaCl and ethanol induction (data not shown).

![Figure 3](image-url)
Fig. 3. The gbaAB operon modulates the transcription of icaA. Relative icaA transcript levels of wild type, SY1 (the gbaA mutant), SY4 (the gbaB mutant), and SY7 (the gbaAB mutant) were measured. All of the real-time RT-PCR assays were repeated five times with similar results. Error bars indicate standard deviations. *P*<0.05, **P**<0.01 vs WT.

between these three strains (Fig. 5). Strain SH1000 belongs to the NCTC8325 lineage (Herbert et al., 2010); however, SH1000 is a PIA-independent biofilm formation strain. Taken together, our data suggest that the gbaAB operon could affect biofilm formation in strain NCTC8325, and GbaA might regulate the biofilm formation via GbaB, which is the biofilm-induced protein involved in biofilm formation. To determine at which step the GbaAB affects biofilm formation on polystyrene, a primary attachment experiment was performed with Petri dishes as described in section “Materials and methods”. We found no significant differences between the gbaA mutant, the gbaB mutant, the gbaAB mutant, and wild type (data not shown), suggesting that the gbaAB operon affects multicellular aggregation or biofilm dispersal rather than primary attachment.

GbaAB regulates the expression of ica operon and the production of PIA

The ica operon is responsible for generating PIA, which is essential for biofilm formation in S. aureus NCTC8325. To examine
Inactivation of gbaA resulted in increased biofilm formation ability in a flow cell, whereas the gbaB mutant reduced biofilm formation.

To compare biofilm formation abilities in the different strains at the dynamic state, biofilm formation assays were performed using a flow-cell system. Consistent with the static biofilm assays, the gbaA mutation increased biofilm formation in the flow cells, and the increase was complemented by plasmid pLJ50 carrying the wild type gbaA gene (Fig. 5A). In addition, we checked the biofilm formation after incubation for 22 h in the flow cells by CLSM, and the results indicated that the mutation of gbaA indeed increased biofilm formation and that the mutation of gbaB dramatically reduced biofilm formation (Fig. 5B). Consistently, our results suggest that GbaAB affects biofilm formation in the dynamic state.

Discussion

Many staphylococcal infections, such as endocarditis and osteomyelitis, are associated with biofilm formation (George and Muir, 2007). For that reason, intensive research into the new regulatory mechanism of biofilm formation in S. aureus could facilitate the development of novel therapeutic devices. In this study we attempted to define the role of a novel operon, gbaAB, in S. aureus biofilm formation.

Both gbaA and gbaB can be found in all other S. aureus strains at the NCBI database. The predicted GbaA amino acid sequence alignments suggest that GbaA belongs to the TetR family transcriptional regulators, which are involved in a wide variety of gene regulatory networks, either as transcription activators or repressors (Ramos et al., 2005). Real-time RT-PCR and EMSA results showed that gbaA and gbaB are in the same operon and that gbaA inhibits the transcript level of gbaB by direct self-repression. In addition, the TetR family transcriptional regulators, which include the QacR repressor of the QacA multidrug efflux pump system and the LcrR repressor of the ica operon in S. aureus, are characterized by conserved helix-turn-helix DNA-binding domains at the amino-terminal ends and divergent carboxy-terminal domains, which may be involved in interactions with compounds that modulate their regulatory activity (Aramaki et al., 1995; Conlon et al., 2002a; Grkovic et al., 1998; Jeng et al., 2008; Ramos et al., 2005). Recently, other researchers using microarray analysis found that the transcript level of gbaA and gbaB can be modulated under some environmental stimuli in S. aureus. For instance, the transcription of gbaA and gbaB was up-regulated under a tea tree oil (TTO) challenge, acid conditions (pH 4.0) and heat stress (48°C), and down-regulated in response to diclofenac (80 μg/ml) and alkaline conditions (pH 10.0) (Anderson et al., 2010; Cauron et al., 2013; Riordan et al., 2011). It is tempting to speculate that GbaA may also be modulated by interacting with inducing compounds and may then regulate the expression and facilitate S. aureus to adapt to stress, such as high or low temperature, antibiotics, alkaline or acid conditions.

Static and dynamic biofilm formation analysis indicated that gbaA regulates biofilm formation through gbaB in S. aureus NCTC8325. Interestingly, our results also showed that the over-expression of gbaB in S. aureus SH1000 did not induce biofilm formation (Fig. S7). SH1000 is a PIA-independent biofilm development strain (Boles and Horswill, 2008), whereas NCTC8325 is a PIA-dependent biofilm formation strain. Thus, we speculated that the gbaAB operon might regulate biofilm formation through activating the expression of the ica operon in NCTC8325. Real-time RT-PCR results confirmed that gbaA modulates the expression of the ica operon via gbaB. The expression of the ica operon can be regulated by many regulators, which can be classified by whether they directly bind to the promoter regions of the ica operon. Among these regulators, IcaR, TcaR, SarA, SrrA, and SarX could directly bind to the promoter regions of the ica operon, whereas SigB, CcpA, Rfb, and PurR could not. IcaR is the most important regulator. However, there was no significant difference in icaR expression in the gbaA mutant, the gbaB mutant, the gbaAB mutant, and the wild type (data not shown). Since both IcaR and SigB are inactive in S. aureus NCTC8325 (Herbert et al., 2010), it appears that the inactivation of IcaR or SigB is not required for biofilm formation in this strain. Although there were no significant differences in other regulator genes in the microarray analysis of the gbaA mutant and the wild type, these results still need to be confirmed by real-time RT-PCR assays in future studies.

In addition to the ica operon, some enzymes that provide biosynthetic intermediates or energy are also required for PIA synthesis (Dobinsky et al., 2003). The sugar nucleotide UDP-GlcNAc, which can be synthesized from glucose, fructose, glucosamine, and GlcNAc, is an immediate precursor required for the production of PIA (Gerke, 1998). Additionally, glucose, fructose, glucosamine, and GlcNAc are reported to possibly influence PIA expression (Gotz, 2002). As shown in Fig. S8, we found that biofilm formation of the gbaA mutant (gbaB high-expression) was stronger than that of the wild type (gbaB low-expression) when these biosynthetic
intermediates were added. In addition to biosynthetic intermediates, the amount of NADH also determines the amount of PI that will be produced (Vuong et al., 2005). Bioinformatic predictions revealed that GbaB might be a putative NAD(P)+/H+ oxidoreductase, suggesting that GbaB may synthesize NAD(P)H in metabolic pathways. As shown in Fig. S9, the intracellular concentrations of free NADH of gbaB mutant significantly increased compared with those of wild type. In addition, we found an NmrA-like NADH sensor protein SAOUHSC_02895, which is near to gbaB (SAOUHSC_02898), and the transcript levels of SAOUHSC_02895 was significantly up-regulated more than 101-fold in gbaB mutant using microarray analysis (Table S1). It appears reasonable to speculate that GbaB may participate in the synthesis of NADH or may be a substrate for PI synthesis.

Although many questions remain, these findings demonstrate that the gbaB operon is involved in multicellular aggregation of biofilm formation via the icl operon (Fig. 6).

Acknowledgments

The authors thank the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) for providing the bacterial strains. This study was supported by the National Science Foundation of China (30970118, 31021061).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jimm.2014.04.003.

References

